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Abstract

The human visual system is more sensitive to symmetry than to repetition. According to the so-called holographic approach [J.

Math. Psychol. 35 (1991) 151; Psychol. Rev. 103 (1996) 429; Psychol. Rev. 106 (1999) 622], however, this perceptual difference

between symmetry and repetition depends strongly on spatial scaling. This was tested in three experiments, using symmetry and

repetition stimuli that consisted of black and white patches, with patch size as the critical variable. In Experiment 1, patch size was

increased in the entire pattern, yielding fewer but larger patches (or blobs). This is known to have hardly any effect on symmetry but,

as found now, it does have a strengthening effect on repetition. In the second experiment, we increased patch size in subpatterns

only, yielding salient blob areas. This again strengthens repetition but, as double-checked in experiment 3, it can weaken symmetry.

These results agree with the holographic approach, and enable an integration of computational, algorithmic, and implementational

aspects of vision.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Visual regularities such as symmetry and repetition

are important cues in the perceptual structuring of the
visible world (cf. Attneave, 1954; Garner, 1974; Klix,

1971; Koffka, 1962; Leeuwenberg, 1971; Palmer, 1983;

Wagemans, 1995; Wertheimer, 1923). That is, detection

of these regularities is an integral part of the general

perceptual interpretation process that is applied to any

visual input. This is not to say, however, that all visual

regularities are detected with equal ease. For instance,

human observers are much more sensitive to symmetry
than to repetition (Bruce & Morgan, 1975; Corballis &

Roldan, 1974; Fitts, Weinstein, Rappaport, Anderson,

& Leonard, 1956; Julesz, 1971; Zimmer, 1984). In this

study, we go into more detail on this well-known phe-

nomenon, to get more insight in the mechanisms un-

derlying regularity detection. The theoretical and

empirical accounts will be reviewed using Marr�s (1982)

distinction between the computational level of descrip-
tion (specifying a system�s goal), the algorithmic level of

description (specifying a system�s method), and the im-

plementational level of description (specifying a system�s
means).

We report three experiments, in which we tested the

effect of spatial scaling on the detectability of symmetry
and repetition. In all three experiments, the stimuli

consisted of black and white patches. In the first ex-

periment, we increased the size of all patches in a stim-

ulus, yielding fewer but larger patches (or blobs). In the

second and third experiments, we increased the size of

the patches in subpatterns only, yielding salient blob

areas.

The symmetry manipulation in the first experiment is
known in the literature (see next section) but, to our

knowledge, the other symmetry and repetition manipu-

lations are not. That is, these other manipulations yield

novel stimuli, that we expected to reveal thus far un-

known differential effects for symmetry and repetition.

This expectation was triggered by the so-called holo-

graphic approach. This approach is based on a new

formalization of visual regularity (for details, see van
der Helm & Leeuwenberg, 1991), and comprises two

coherent regularity-detection models at the computa-

tional and algorithmic levels of description, respectively

(for details, see van der Helm & Leeuwenberg, 1996,

1999). The algorithmic model is sketched later on, in the

introduction to the second experiment. At this moment,
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it may suffice to mention that it is a faithful algorithmic

translation of the computational model that is sketched

in the now following introduction to the first experi-

ment.

2. Number effects

van der Helm and Leeuwenberg�s (1996) computa-

tional model reflects the idea that the detectability of a

visual regularity in a stimulus is determined by the

representational strength (or weight of evidence; see

McKay, 1969) of this regularity. More specifically, the

model quantifies the strength of a regularity by

W ¼ E=n, in which n is the number of stimulus elements,
while E is the number of the so-called holographic

identities that, according to van der Helm and Leeu-

wenberg�s (1991) formalization, constitute the regular-

ity. This implies, for symmetry, that E is the number of

element pairs that form a symmetry pair, whereas, for

repetition, E is the number of repeats minus one. Thus,

for a perfect symmetry on n elements, E ¼ n=2 and

W ¼ 0:5. That is, W is independent of the number of
stimulus elements. For a perfect m-fold repetition (i.e., m
repeats) on n elements, however, E ¼ m� 1 and W ¼
ðm� 1Þ=n. That is, for fixed m, W depends strongly on

the number of stimulus elements. In this article, we

consider twofold repetition only, for which W ¼ 1=n.
Hence, by way of this computational model, the holo-

graphic approach predicts the well-known phenome-

non that symmetry is better detectable than repetition:
Generally, symmetry has a higher W value than repeti-

tion. In addition, the holographic approach predicts that

this difference between symmetry and repetition depends

on the number of stimulus elements. That is, it predicts a

number effect in repetition but not symmetry. Both

predictions contrast with, for instance, the predictions

by the so-called transformational approach (Palmer,

1983) and by the so-called bootstrap model (Wagemans,

van Gool, Swinnen, & van Horebeek, 1993), which

present alternative models at the computational level

and the algorithmic level, respectively. The internal

structures of symmetry and repetition, as postulated in
the transformational approach and in the bootstrap

model (see Fig. 1), simply do not allow such differenti-

ations between symmetry and repetition.

It is true that, at the implementational level, similar

differentiations might be attributable to, in particular,

the factor called proximity or local attention. However,

it remains to be seen whether this factor really provides

an alternative explanation, or just a compatible expla-
nation at an alternative level of description (see Section

7). Furthermore, the holographic model has consider-

able explanatory power in a much broader domain that

includes not only perfect regularities, but also perturbed

regularities and combinations of regularities (see van der

Helm & Leeuwenberg, 1996). Currently relevant is that

other studies already investigated number effects for

symmetry, but not yet for repetition. This is discussed
next.

The empirical literature consistently shows that there

is indeed hardly a number effect in symmetry. That is,

minor or no effects were found when varying the number

of line segments in contour shapes (Baylis & Driver,

1994), or when varying the number of dots in dot pat-

terns (Wenderoth, 1996), or when scaling up patch size

in patch patterns, yielding fewer but larger patches
(Dakin & Watt, 1994; Oomes, 1998; Tapiovaara, 1990).

The latter manipulation is the one we used in the ex-

periment reported here, so we expect to find the same
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Block structure Block structure Point structure Point structure Point structure Block structure

Transformational Approach Bootstrapping Model Holographic Approach

Fig. 1. Internal structure of symmetry and repetition according to various approaches. Every rectangle and square indicates a substructure. (A) The

transformational approach. For symmetry, the correspondence between two pattern halves is captured by a 180� 3D rotation about the symmetry

axis, and in repetition, it is captured by a translation. This implies that both symmetry and repetition get a block structure, in which each pattern half

constitutes one substructure. (B) The bootstrap model. A pair of corresponding points in symmetry or repetition forms a virtual line, and two such

virtual lines form a virtual trapezoid in symmetry, whereas they form a virtual parallelogram in repetition. These correlation quadrangles form the

anchors for the detection process and imply that both symmetry and repetition get a point structure, in which each element constitutes one sub-

structure. (C) The holographic approach. Representationally, symmetry is constituted by the relationships between corresponding points, and

repetition is constituted by the relationships between the repeats. This implies that mirror symmetry gets a point structure, but repetition a block

structure.
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result, which would be in line with the holographic ap-
proach.

Regarding a number effect in repetition, we know of

no empirical studies in the literature. It is true that

Baylis and Driver (1994) concluded to a strong number

effect in repetition, but their stimuli constitute what we

would call anti-repetition. They considered single-sur-

face patterns in which two contour parts were identical

under translation but with reversed coloring at either
sides of these contour parts. In the first experiment,

however, we considered patterns consisting of two

identical juxtaposed subpatterns (see Fig. 2). The latter

patterns exhibit the conventional type of repetition, for

which the holographic approach predicts a number

effect. The main objective of the first experiment is

precisely to test this holographic prediction.

3. Experiment 1

3.1. Method

3.1.1. Subjects

Twelve naive observers (five males and seven females)

participated in the experiment. All the subjects were

undergraduate or postgraduate students at the Univer-

sity of Nijmegen. They were either paid or received

course credits. They were aged between 18 and 31 and

had normal or corrected-to-normal acuity.

3.1.2. Stimuli

Three types of stimulus condition were produced:

symmetry, repetition and random. The test stimuli were

black and white Gaussian blob patterns of 500� 510

pixels. The luminance of the black patches was 1.4 cd/m2

and the luminance of the white patches was 86 cd/m2.

Each stimulus subtended 5.71�� 5.83� of the visual field.

For the random condition, the coarseness of the
Gaussian blobs in the patterns was varied as follows: An

image was filled with random Gaussian noise and

blurred with Gaussian filters with eight different radii

(2, 4, 6, 8, 10, 12, 14, 16 pixels). Finally, the pattern was

thresholded to get black and white images. For the

symmetry and repetition conditions, the right-hand

halves of the random patterns were replaced by mir-

rored respectively identical versions of the left-hand

halves.

In the random patterns, the Gaussian blobs exhibit

contour continuity across the vertical midline. This is
also the case in the symmetry patterns, but not in the

repetition patterns. Therefore, in the repetition detection

task the right-hand half of the random patterns was 180�
rotated, so that blob-contour continuity could not give a

cue.

In all conditions, the two halves of each stimulus were

separated by a 10-pixel-wide vertical separation bar.

Without this separation bar, detection of the repetition
patterns would have been extremely difficult, especially

at finer scales. Using this separation bar, symmetry and

repetition detection became more comparable. That is,

spatial separation between the two halves of a stimulus

makes symmetry detection more difficult, but repetition

detection easier (Corballis & Roldan, 1974). Fig. 3

shows some examples of experimental stimuli in each

condition.
Five different stimuli were produced for each scale in

all three conditions. Each stimulus was presented three

times at two stimulus presentation times (50 and 80 ms).

Thus, one experimental block included 480 stimuli:

[two conditions (symmetry and random or repetition

and random)� 8 scales� 2 presentation times� 5 pat-

terns]� 3.

3.1.3. Apparatus

A standard PC with a Philips 109B monitor using a

1024� 1280 pixels resolution presented the stimuli. The

stimuli were displayed on a gray background with 70 cd/

m2 luminance. The subjects viewed the screen at a

Fig. 2. Examples of different types of repetition. (A) A single surface

pattern in which two contour parts are identical under translation with

reversed colouring at either sides of these contour parts; this type is

considered by Baylis and Driver (1994). (B) A pattern consisting of two

identical juxtaposed subpatterns; this type is considered in the exper-

iments reported here.

Fig. 3. Three example stimuli from each condition in Experiment 1:

(A) symmetrical stimuli and (B) repetition stimuli.
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distance of 114 cm and a button-box was used to record

their responses.

3.1.4. Procedure

The experiment consisted of two blocks: symmetry
and repetition. The order of type of blocks was coun-

terbalanced over subjects. The subjects were instructed

to discriminate symmetry or repetition from random

stimuli by pressing the appropriate button on the button

box. It was emphasized to the subjects that fixation

should be maintained throughout each trial and re-

sponses should be made as quickly and accurately as

possible.
Before each block, the subjects were given a number

of practicing trials with feedback about the correctness

of their response. During the experiment, subjects no

longer got feedback. Before the stimulus appeared, a

fixation cross was presented centered on the screen. Two

stimulus presentation times were used, namely, 50 and

80 ms. A mask (grid) was briefly (10 ms) presented after

each stimulus to obliterate afterimages.

3.2. Results

We measured reaction time (RT), and we computed d 0

as measure of discriminability (Swets, 1964). The three-
factorial design had, as independent variables, presen-

tation time (two levels: 50 and 80 ms), regularity (two

levels: repetition and symmetry), and scale (eight levels).

We performed repeated measures ANOVAs to analyze

the data.

3.2.1. Reaction times

The analysis of RTs was restricted to correct re-

sponses. The participants gave significantly faster re-

sponses for stimuli presented at longer presentation

times (80 ms) than for stimuli presented at shorter pre-

sentation times (50 ms), [F ð1; 11Þ ¼ 11:92, p < 0:05].
The RTs for symmetrical patterns were significantly
shorter than for repeated patterns [F ð1; 11Þ ¼ 70:48,
p < 0:001]. The main effect of scale did not reach sig-

nificance for repetition [F ð7; 5Þ ¼ 0:84, p ¼ 0:61] nor for

symmetry [F ð7; 5Þ ¼ 2:2, p ¼ 0:21]. None of the inter-

actions was significant.

3.2.2. Discriminability (d 0)

The results for d 0 data are shown in Fig. 4. There was

no significant main effect of presentation time nor were

there significant interactions with presentation time. The

d 0 values for symmetry were significantly higher than for

repetition [F ð1; 11Þ ¼ 223:46, p < 0:001], the main effect

of scale was significant both for repetition [F ð7; 5Þ ¼
17:21, p < 0:005] and for symmetry [F ð7; 5Þ ¼ 63:09,
p < 0:001]. The regularity � scale interaction was also

significant [F ð7; 5Þ ¼ 7:06, p < 0:05].

3.3. Discussion

Both the RT and d 0 data exhibit the well-known

phenomenon that symmetry is generally better detect-

able than repetition. As mentioned, however, the main

objective of this experiment was to investigate number

effects in symmetry and, in particular, in repetition.

For symmetry, the d 0 values remained at a fairly
constant level of around 4.5, across scales 3–8. A level of

d 0 ¼ 4:5 is very high, so that this constancy may be a

ceiling effect. This questions the earlier-mentioned

studies that reported minor or no number effects in

symmetry. Generally, these reports were not based on d 0,

but on RTs or accuracy rates. Hence, although the now

found constancy of d 0 does not contradict the holo-

graphic prediction, it would be better to test the absence
of a number effect at lower d 0 levels––for instance, in

perturbed symmetry (a recent study suggests that, even

then, there is no number effect; see van der Helm &

Leeuwenberg, 2003).

A special word may be devoted to the unexpected

lower d 0 values for symmetry at the finest scales 1 and 2.

These lower d 0 values were not caused by a low correct

hit rate (that was actually very constant across all
scales), but by a high false alarm rate. We think that this

high false alarm rate was due to the separation bar that

we introduced for the reason we mentioned in the

stimulus section of the experimental design. That is,

using the same stimulus type in an even broader range of

fine scales, but without using a separation bar, Oomes

(1998) did not find such a high false alarm rate. It seems

that the separation bar triggered a more ‘‘liberal’’
matching of corresponding points, which, especially at

fine scales, would yield more false alarms. In other

words, without the separation bar, we probably would

not have found these lower d 0 values at the finest scales.

The novel result of this experiment is the significant

main effect of scale on d 0 for repetition. This finding is

consistent with the holographic approach which, as we
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Fig. 4. Discriminability measured as d 0 as a function of the spatial

scale in Experiment 1.
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explicated earlier, predicts computationally a number

effect in repetition. As we discuss next, the algorithmic

translation of this number effect predicts salience effects

as well.

4. Salience effects

It is often thought that the detectability of symmetry

and repetition improves when the pattern contains sa-

lient subpatterns. Indeed, if subpatterns are salient be-

cause they exhibit additional regularity, then they seem

to improve detectability, with a larger benefit for repe-

tition than for symmetry (Corballis & Roldan, 1974; for
an overview and a holographic explanation at the

computational level of description, see van der Helm &

Leeuwenberg, 1996).

In the second experiment, however, we considered

salient substructures that do not exhibit extra local

regularities. We introduced relatively small subpatterns

(one in each pattern half), that consisted of blobs, i.e., of

larger patches than in the rest of the pattern (see Fig. 5).
That is, these novel stimuli exhibit only one global

regularity (symmetry or repetition), but they differ from

the usually investigated cases because they contain such

coarse blob areas. We expect that such blob areas are

salient because, compared to the rest of the pattern, such

blob areas contain predominantly low spatial frequency

information which, as Julesz and Chang (1979) put it,

seems to have more perceptual weight than high spatial
frequency information. Indeed, there is evidence (for an

overview, see Palmer, 1999) that low spatial frequency

information follows the magnocellular pathway, which

is faster than the parvocellular pathway that carries high

spatial frequency information.

Furthermore, Tyler and Baseler (1998) found evi-

dence that regularity detection takes place in the middle

occipital gyrus (MOG), i.e., after the magno–parvo
separation has occurred in the lateral geniculate nucleus.

This implies, for our stimuli, a split regularity-detection

process in the MOG. That is, the regularity in the blob

areas starts to be processed first and, only some time

later, the regularity in the rest of the pattern starts to be

processed. The question now is: Does such a split pro-

cess improve the detectability of symmetry and repeti-

tion, or not?

The holographic approach answers this question by

way of the so-called holographic bootstrap model at the

algorithmic level of description. This model is a modi-

fication of Wagemans et al.�s (1993) original bootstrap

model, and we refer the reader to van der Helm and

Leeuwenberg (1999) for details about how this modifi-
cation follows from the computational description

within the holographic approach. Here, we sketch its

basic idea, and its implication regarding our present

stimuli.

Just as the original bootstrap model, the holographic

bootstrap model takes correlation quadrangles (trape-

zoids and parallelograms) as the anchors for the detec-

tion of symmetry and repetition (see Fig. 1B). First,
suppose that a correlation trapezoid has been found as

an indication of the presence of symmetry. Then, just as

in the original bootstrap model, the holographic boot-

strapping model propagates in steps, each step adding

more and more correlation trapezoids in parallel (see

Fig. 6A). Thus, the number of correlation trapezoids

increases exponentially.

Second, suppose that a correlation parallelogram has
been found as an indication of the presence of repeti-

tion. Then, the original bootstrapping model propagates

essentially the same way as it does for symmetry. In the

holographic bootstrapping model, however, the four

elements constituting the parallelogram are first clus-

tered into two single units, i.e., into two identical blocks

(see Fig. 6B). These two blocks then form one virtual

line, for which a new virtual line is sought to form anew
a correlation parallelogram. If found, the new elements

are included to form two larger identical blocks, and so

on until, in accordance with the holographic structure of

repetition, the entire pattern has been established as

consisting of two identical blocks. Thus, this time the

propagation spreads linearly.

Fig. 5. Examples of the test stimuli used in Experiment 2. (A) A

symmetrical pattern and (B) a repetition pattern.

Fig. 6. Holographic bootstrapping in a symmetry (A) and in a repe-

tition (B). The bold, dashed, lines indicate correlation quadrangles.

The thin, dashed, lines indicate the search for additional correlation

quadrangles. The shaded areas in B indicate the stepwise clustering

into two larger and larger identical blocks.
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Hence, the foregoing algorithmic description implies a

linear spreading in repetition, but an exponential

spreading in symmetry. This agrees well with the earlier-

given computational description of a number effect in

repetition but not in symmetry. For instance, in sym-

metry, the propagation spreads over 35 elements just

as fast as it does over 60 elements, so that there is hardly

a number effect. The difference in spreading speed has
the following remarkable implication for our present

stimuli.

Suppose, first, that the two blob areas (one in each

half of a global symmetry or repetition) are not pro-

cessed separately from the rest. That is, the pattern is

processed as usual, starting from a correlation quad-

rangle that happens to relate two points inside one blob

area to two points inside the other blob area. Assume
that this would take a total processing time of T (pat-
tern). Now suppose that, these blob areas are pro-

cessed first––taking a time of T (blobs). Subsequently,

the rest of the pattern is processed starting from the

correlations resulting from these blob areas––taking

a time of T (rest). Then, in repetition, the total time

T (blobs) + T (rest) is about equal to T (pattern), but in

symmetry it is larger than T (pattern). That is, in repe-
tition, the split process clusters the blob areas little by

little (i.e., linearly) into two identical single units, just as

would be the case without this split process. These two

units then form a virtual line from which the rest of the

pattern can be processed, as if these units were two basic

elements in the pattern. In symmetry, however, by the

time the split process has processed the blob areas, the

no-split process would already have processed a much
larger region, because of the exponential spreading.

For our stimuli, the foregoing suggests that symmetry

is hindered by the magno–parvo split process, whereas

repetition is not. An additional factor is that the increase

of patch size in the blob areas implies a lower number of

elements in the blob areas. Because the holographic

approach predicts a number effect in repetition but not

in symmetry, the holographic prediction regarding the
present stimuli is that the salient blob areas have a

strengthening effect on repetition but a weakening effect

on symmetry. This prediction was tested in the experi-

ment reported next.

5. Experiment 2

5.1. Method

5.1.1. Subjects

The subjects were 18 undergraduate students and staff

members (seven males and 11 females) including two
authors (GvdV and PvdH) from the University of Ni-

jmegen who had not participated in Experiment 1.

Students were either paid or received course credits. The

subjects were aged between 18 and 55 and had normal or

corrected-to-normal acuity.

5.1.2. Stimuli

In this experiment, two main types of stimuli were

produced: symmetry and repetition. The stimuli, black

and white Gaussian blob patterns, were generated in the
same fashion as in Experiment 1 except for the follow-

ing. We now introduced two, relatively small, elliptical

areas (one in each pattern half) with a patch size that

differed from the patch size in the rest of the pattern.

Thus, two different coarseness levels are present simul-

taneously (see Fig. 5). Each stimulus was 219� 250

pixels and subtended 4.1�� 4.7� in the visual field. The

elliptical areas were positioned at the center of both
stimulus halves. Each elliptical area had a maximal

diameter of 100 pixels and a minimal diameter of 50

pixels, and subtended 1.9�� 0.9� in the visual field.

Furthermore, as illustrated in Figs. 7 and 8, the coarse-

ness difference between the elliptical areas and the larger

area was varied. At a starting scale (scale 0), both areas

had the same coarseness level (the Gaussian noise was

blurred with a Gaussian filter radius of four pixels).
From this starting scale, the coarseness level of either the

elliptical areas (see Fig. 7a and b) or the larger area (see

Fig. 8a and b) was increased. At scale 1 a blurring radius

of eight pixels was used to produce the coarser areas,

and at scale 2 a blurring radius of 12 pixels.

Within each of the two main conditions (symmetry

and repetition), three subconditions (see Figs. 7 and 8)

were constructed as follows. Perfect subcondition: the
pattern shows symmetry or repetition in the elliptical

areas as well as in the larger area. Imperfect subcondi-

tion 1: the elliptical areas are random while the larger

area shows symmetry or repetition. Imperfect subcon-

dition 2: the elliptical areas show symmetry or repetition

while the larger area is random.

Five different stimuli were produced for each scale in

the two imperfect subconditions, and 10 different stimuli
for each scale in the perfect condition. Each stimu-

lus was presented three times. Therefore one experi-

mental block (symmetry or repetition) included 300

stimuli: [5 scales� (10 imperfect patterns + 10 perfect

patterns)]� 3.

5.1.3. Apparatus and procedure

The apparatus and the procedure were generally

identical to those in Experiment 1 except that, now, the

stimulus presentation time was longer (200 ms) and a

mask was not presented after the stimuli. Pilot experi-

ments indicated that subjects required these changes to

produce accuracy rates similar to those in Experiment 1.

Subjects were instructed to discriminate between
patterns that are perfect (perfect symmetry and perfect

repetition) and patterns that are imperfect (imperfect

symmetry and imperfect repetition). They were told
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that, in the imperfect stimuli, only part of the pattern

exhibited the relevant regularity.

5.2. Results

Unlike the conditions in Experiment 1, the subcon-

ditions in this experiment cannot be considered as con-

trol conditions of each other, so that, now, d 0 is not a

meaningful criterion to investigate the effect of salient

blob areas on symmetry and repetition detection. In-

stead, for each subcondition separately, we analyzed the
accuracy and the RT data of the correct responses.

The means and standard deviations of the accuracy

and RT data for each subcondition are presented in

Tables 1 and 2. In separate figures, the accuracy rates

and the mean RTs in the symmetry and repetition

conditions are shown as a function of the spatial scale.

Fig. 7. (a) Examples of the symmetrical stimuli from each subcondi-

tion and scales for the elliptical area in Experiment 2. (A) Perfect

subcondition: the patterns show symmetry in the elliptical areas as well

as in the larger area. (B) Imperfect subcondition 1: the elliptical areas

are random while the larger area shows symmetry. (C) Imperfect

subcondition 2: the elliptical areas show symmetry while the larger

area is random. (b) Examples of the repetition stimuli from each

subcondition and scales for the elliptical area in Experiment 2. (A)

Perfect subcondition: the patterns show repetition in the elliptical areas

as well as in the larger area. (B) Imperfect subcondition 1: the elliptical

areas are random while the larger area shows repetition. (C) Imperfect

subcondition 2: the elliptical areas show repetition while the larger area

is random.

Fig. 8. (a) Examples of the symmetrical stimuli from each subcondi-

tion and scales for the larger area in Experiment 2. (A) Perfect sub-

condition: the patterns show symmetry in the elliptical areas as well as

in the larger area. (B) Imperfect subcondition 1: the elliptical areas are

random while the larger area shows symmetry. (C) Imperfect sub-

condition 2: the elliptical areas show symmetry while the larger area is

random. (b) Examples of the repetition stimuli from each subcondition

and scales for the larger area in Experiment 2. (A) Perfect subcondi-

tion: the patterns show repetition in the elliptical areas as well as in the

larger area. (B) Imperfect subcondition 1: the elliptical areas are ran-

dom while the larger area shows repetition. (C) Imperfect subcondition

2: the elliptical areas show repetition while the larger area is random.
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At the starting scale (scale 0) both the larger area and

the elliptical area had the same coarseness level. The Fig.

9a and b show the results for increasing the coarseness in

only the elliptical areas. The Fig. 10A and B show the

results for increasing the coarseness in the larger area

only. Repeated measures ANOVAs were performed to

analyze the effect of spatial scale in each part of the

patterns. The results of these ANOVAs are shown in
Tables 3 and 4, and are summarized next.

5.2.1. Results for scaling up the elliptical area

The RT data show no significant effects in both im-

perfect subconditions but, in the perfect subcondition,

the main effects of scale for symmetry and repetition,

and the regularity� spatial scale interaction, are signif-

icant.
The accuracy data show significant main effects of

scale for symmetry and repetition in all three subcon-

ditions, while the regularity� spatial scale interaction is

significant in the perfect subcondition and the imperfect

subcondition 1. For both symmetry and repetition, the

accuracy increases with scale in the imperfect subcon-

dition 1, and decreases in the imperfect subcondition 2.

In the perfect subcondition, however, the accuracy in-

creases for repetition but decreases for symmetry.

5.2.2. Results for scaling up the larger area

The RT data, for repetition, show no significant main

effect of scale in any of the subconditions and, for

symmetry, a significant main effect in only the imperfect

subcondition 2. The regularity� spatial scale interaction

is significant in the perfect subcondition and in imperfect

subcondition 2.

The accuracy data show, for symmetry, no significant

main effect of scale in any of the subconditions and, for
repetition, significant main effects in the perfect sub-

condition (accuracy increases from scale 0 to scale 2)

and in the imperfect subcondition 1 (accuracy decreases

Table 1

Means and standard deviations of correct responses in each subcondition

Subconditions Spatial scale

For the elliptical area For the larger area

0 1 2 1 2

M SD M SD M SD M SD M SD

Perfect

Symmetry 0.92 0.08 0.81 0.13 0.82 0.16 0.88 0.12 0.89 0.1

Repetition 0.59 0.19 0.83 0.11 0.9 0.12 0.58 0.13 0.72 0.14

Imperfect

Symmetry 0.11 0.17 0.59 0.27 0.75 0.22 0.17 0.15 0.19 0.18

Repetition 0.55 0.23 0.75 0.21 0.76 0.19 0.43 0.19 0.31 0.19

Imperfect 2

Symmetry 0.94 0.09 0.81 0.2 0.67 0.23 0.98 0.03 0.97 0.04

Repetition 0.64 0.2 0.34 0.19 0.27 0.18 0.67 0.15 0.66 0.15

Note: n ¼ 18.

Table 2

Means and standard deviations of RT for correct responses in each subcondition

Subconditions Spatial scale

For the elliptical area For the larger area

0 1 2 1 2

n M SD n M SD n M SD n M SD n M SD

Perfect

Symmetry 18 507.88 135.42 18 561.69 149.25 18 580.76 157.80 18 528.9 162.73 18 560.9 173.05

Repetition 18 721.90 270.51 18 620.62 218.66 18 592.04 203.45 18 747.05 233.99 18 699.94 200.21

Imperfect 1

Symmetry 10 640.40 370.15 18 654.96 184.08 18 588.74 144.93 15 877.35 367.14 14 852.92 394.69

Repetition 18 773.56 316.79 18 684.15 190.72 18 645.81 161.99 18 777.67 252.11 17 775.22 268.67

Imperfect 2

Symmetry 18 542.61 179.52 18 567.52 132.46 18 578.15 173.72 18 473.88 100.21 18 497.04 99.55

Repetition 18 737.05 253.79 18 802.93 288.43 17 776.54 265.55 18 751.63 268.26 18 754.52 252.93
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from scale 0 to scale 2). The regularity� spatial scale

interaction is significant in the perfect subcondition and
in the imperfect subcondition 1.

5.3. Discussion

The results for scaling up the larger area showed

significant effects on accuracy for repetition in the per-

fect subcondition and in the imperfect subcondition 1.

These findings are in fine agreement with the number
effect found in Experiment 1. For symmetry, fine-scaled

subpatterns in coarse-scaled surroundings, however,

hardly affected subjects� performance. This is consistent

with Dakin and Herbert�s (1998) finding that the so-

called integration region around the symmetry axis is

small for high spatial frequencies. The integration region
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Fig. 9. (a) Mean accuracy for scaling up the elliptical area in each subcondition in Experiment 2. (b) RT of correct responses for scaling up the

elliptical area in each subcondition in Experiment 2.
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is the area outside of which stimulus elements do not

seem to be processed in symmetry detection. That is, in

our stimuli, the fine-scaled subpatterns probably fall

outside this integration region.

The results for scaling up the elliptical area show that

coarse-scaled subpatterns (or blob areas) in fine-scaled
surroundings affect both symmetry and repetition. In the

imperfect subcondition 1, where random blob areas

correctly signal imperfect regularities, accuracy indeed

increases as blob size increases. In the imperfect sub-

condition 2, where symmetrical or repeated blob areas

incorrectly signal perfect regularities, accuracy indeed

decreases as blob size increases. Thus, in both imper-

fect subconditions, the blob areas become more and
more decisive, which confirms their salience. Therefore,

in the perfect subcondition, where both blob areas and
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Fig. 10. (A) Mean accuracy for scaling up the larger area in each subcondition in Experiment 2 and (B) RT of correct responses for scaling up the

larger area in each subcondition in Experiment 2.
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surroundings signal perfect regularities, one might ex-

pect that the symmetrical or repetitive blob areas would

improve performance, and this is indeed the case for

repetition but, remarkably, for symmetry, both accuracy

and reaction time data deteriorate. This result is perhaps

counter-intuitive, but is well in line with the holographic

approach which, as we explicated earlier, predicts that

such salient blob areas strengthen repetition but weaken
symmetry.

One might argue alternatively that the weakening

effect in symmetry is due to the spatial separation be-

tween the blob areas. After all, Corballis and Roldan

(1974) found that a spatial separation between stimulus

halves also weakens symmetry. However, Tyler and

Hardage (1996) found that symmetry remains about

equally detectable when the symmetry halves are si-
multaneously separated and scaled up. The latter finding

is consistent with Dakin and Herbert�s (1998) afore-

mentioned finding on integration regions. This suggests,

regarding our Experiment 2, that the weakening effect in

symmetry cannot be attributed to the spatial separation

between the blob areas. Yet, Corballis and Roldan�s
(1974), Tyler and Hardage�s (1996), as well as Dakin and

Herbert�s (1998) findings concern manipulations of

whole symmetry halves and not, as in our case, of parts

of symmetry halves. Therefore, in the next experiment

we further investigated the modulating effect of inte-
gration regions on salience effects.

6. Experiment 3

6.1. Method

6.1.1. Subjects

Sixteen new subjects (six males and 10 females) par-

ticipated in the experiment. They were aged between 23

and 30 and had (corrected-to-) normal visual acuity. All

Table 3

Results of repeated measures of ANOVA of correct responses in each subcondition

Subconditions Main effect of scale Condition (symmetry, repetition)� Scale interaction

Scale Scale

For the elliptical area For the larger area For the elliptical area For the larger area

F p F p F p F p

Perfect

Symmetry 4.27 0.03 0.78 0.48 30.03 <0.001 8.07 0.004

Repetition 18.65 <0.001 10.73 0.001

Imperfect 1

Symmetry 47.06 <0.001 1.21 0.33 19.13 <0.001 19.15 <0.001

Repetition 8.02 0.004 6.72 0.008

Imperfect 2

Symmetry 12.39 0.001 2.03 0.16 2.77 0.09 0.05 0.95

Repetition 14.75 <0.001 0.17 0.85

Note: df ¼ 16.

Table 4

Results of repeated measures of ANOVA for RT of correct responses in each subcondition

Subconditions Main effect of scale Condition (symmetry, repetition)�Scale interaction

Scale Scale

For the elliptical area For the larger area For the elliptical area For the larger area

df F p df F p df F p df F p

Perfect

Symmetry 16 4.79 0.02 16 3.43 0.058 16 15.93 <0.001 16 5.79 0.013

Repetition 16 5.46 0.02 16 3.56 0.053

Imperfect 1

Symmetry 8 2.82 0.12 6 1.12 0.39 8 0.24 0.80 5 1.19 0.38

Repetition 16 3.29 0.06 15 0.08 0.92

Imperfect 2

Symmetry 16 0.52 0.61 16 6.39 0.009 15 0.30 0.74 16 4.33 0.031

Repetition 15 0.84 0.45 16 0.14 0.87
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subjects were again undergraduate or postgraduate

students at the University of Nijmegen and were paid or

received course credits.

6.1.2. Stimuli

The experimental stimuli, black and white Gaussian

blob patterns, were generated analogously to the stimuli

in the Experiment 2 except for the following. Now, one

elliptical area on the center of the symmetry axis was

introduced with a size of 70� 110 pixels (1.3�� 2.1�
visual angle). No separation bar was introduced between

the two halves of the stimuli.

The coarseness of the elliptical area and the larger

area could both be fine (radius of four pixels) or coarse

(radius of eight pixels) yielding four combinations: fine-

scaled larger area with fine-scaled elliptical area (FF),

coarse-scaled larger area with fine-scaled elliptical area

(CF), fine-scaled larger area with coarse-scaled elliptical
area (FC) and as a new combination compared to Ex-

periment 2, coarse-scaled larger area with coarse-scaled

elliptical area (CC).

Like in Experiment 2, three basic conditions were

constructed as follows. Perfect condition: the pattern

shows symmetry in the elliptical area as well as in the

larger area. Imperfect condition 1: the elliptical area is

random while the larger area shows symmetry. Imper-
fect condition 2: the elliptical area shows symmetry

while the larger area is random. Fig. 11 shows example

stimuli for the perfect condition.

Twenty different stimuli were produced for each of the

four scale combinations in the perfect condition. The

two imperfect conditions each consisted of 10 different

stimuli for each scale combination. The total experiment

consisted of 480 trials: [20 perfect + 10 imperfect 1+ 10

imperfect 20]� 2 background scales� 2 scales of the

elliptical area.

6.1.3. Apparatus and procedure

The apparatus and procedure were identical to those

in Experiment 2.

6.2. Results

We performed separate repeated measures ANOVAs

for the three basic conditions (perfect, imperfect 1 and

imperfect 2). The coarseness of the background and the

coarseness of the elliptical area were within subject

variables. We analysed the RT and accuracy as depen-

dent variables. RTs were analysed for correct responses.
The results for each condition are shown in Fig. 12. The

means and standard deviations of accuracy rates and

RTs are presented in Table 5.

6.2.1. Results for the perfect condition

The main effect of coarseness for the larger area was

significant for both RTs [F ð1; 15Þ ¼ 9:265, p < 0:01] and
accuracy rates [F ð1; 15Þ ¼ 10:709, p < 0:01]. Subjects

responded slower and accuracy rates were lower in case

of a coarse larger area than in case of a fine larger area.

Furthermore, the interaction between the coarseness of

the larger area and the coarseness of the elliptical area

was significant for both RTs [F ð1; 15Þ ¼ 11:76, p < 0:01]
and for accuracy [F ð1; 15Þ ¼ 5:58, p < 0:05].

Further investigation of all possible contrasts for this
interaction revealed that when the elliptical area was

fine-scaled subjects reacted faster and were more accu-

rate in case of a fine-scaled larger area (FF) than in case

of a coarse-scaled larger area (CF), [RT: F ð1; 15Þ ¼
28:44, p < 0:001; Accuracy: F ð1; 15Þ ¼ 12:55, p < 0:05].
None of the other contrasts reached significance.

6.2.2. Results for the imperfect condition 1

The main effect of coarseness for the elliptical area

was significant for both reaction times [F ð1; 15Þ ¼ 49:61,
p < 0:001] and accuracy rates [F ð1; 15Þ ¼ 28:46, p <
0:001]. Subjects reacted faster and had higher accuracy

rates in case of a coarse-scaled elliptical area than in case

of a fine-scaled elliptical area. Furthermore, the inter-

action between the coarseness level of the larger area
and that of the elliptical area was significant for RTs

[F ð1; 15Þ ¼ 8:86, p < 0:01] but not for accuracy rates.

Further investigation of all possible contrasts for this

interaction revealed the following significant results.

Subjects responded faster to FF than to CC [F ð1; 15Þ ¼
32:91, p < 0:001]. Subjects responded faster to FC than

to FF [F ð1; 15Þ ¼ 44:41, p < 0:001]. Subjects responded

faster to CC than to CF [F ð1; 15Þ ¼ 16:48, p < 0:01].
Subjects responded faster to CF than to FC [F ð1; 15Þ ¼
34:34, p < 0:001]. Finally, subjects tended to respond

faster to FC than to CC [F ð1; 15Þ ¼ 9:12, p ¼ 0:052].
Fig. 11. Examples of the stimuli from each scale of the perfect con-

dition in Experiment 3.
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6.2.3. Results for the imperfect condition 2

The main effect for coarseness of the larger area was

significant for both RTs [F ð1; 14Þ ¼ 28:25, p < 0:001]
and accuracy rates [F ð1; 14Þ ¼ 218:84, p < 0:001]. When
the larger area was coarse-scaled subjects were faster

and more accurate than when the larger area was fine-

scaled. The interaction between the coarseness level of

the larger area and that of the elliptical area was not

significant.

6.3. Discussion

Like in Experiment 2, the results for the two imperfect

conditions clearly confirm the salience of the coarse-

scaled areas. That is, detection of imperfect regularities

improved substantially in both RTs and accuracy data

when the random information was coarse-scaled in the

elliptical area (the imperfect condition 1) or in the larger
area (the imperfect condition 2).

The results for the perfect condition show that fine-

scaled symmetry around coarse-scaled symmetry does

not affect performance, but that coarse-scaled symmetry

around fine-scaled symmetry gives deterioration. This

finding seems to stress the relevance of the integration

region. Dakin and Herbert (1998) found that the inte-

gration region is an elliptical area around the symmetry
axis (with the same orientation). Most importantly, they

also found that it is larger for coarser scales (without

Fig. 12. RT of correct responses and mean accuracy in each condition in Experiment 3. (FF) Fine-scaled larger area with fine-scaled elliptical area.

(CF) Coarse-scaled larger area with fine-scaled elliptical area. (FC) Fine-scaled larger area with coarse-scaled elliptical area. (CC) Coarse-scaled

larger area with coarse-scaled elliptical area.

Table 5

Means and standard deviations of accuracy and RT for correct responses in each condition

Conditions Combinations of coarseness levels of the larger (L) and the elliptical (E) areas

Fine L–Fine E Coarse L–Fine E Fine L–Coarse E Coarse L–Coarse E

M SD M SD M SD M SD

Perfect

Accuracy 0.94 0.06 0.88 0.08 0.93 0.07 0.91 0.06

RT 650.55 100.98 699.46 119.19 685.21 127.64 686.73 112.99

Imperfect 1

Accuracy 0.77 0.21 0.73 0.22 0.96 0.04 0.93 0.12

RT 706.51 106.05 685.72 116.04 592.28 72.71 629.78 94.91

Imperfect 2

Accuracy 0.34 0.18 0.85 0.16 0.37 0.21 0.82 0.14

RT 796.14 145.49 689.44 135.52 775.47 165.81 674.39 124.73

Note: n ¼ 16.
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affecting symmetry detection; see Dakin & Watt, 1994;

Oomes, 1998; Tapiovaara, 1990). This seems to explain

why fine-scaled symmetry around coarse-scaled sym-

metry has no effect: The fine-scaled area simply falls

outside the integration region for fine scales. It also

seems to explain why coarse-scaled symmetry around

fine-scaled symmetry may have effect: The fine-scaled

area falls at least partly inside the integration region for
fine scales, and the coarse-scaled area falls at least partly

inside the integration region for coarse scales. It does

not explain, however, the deterioration in the latter case.

Hence, if one takes integration regions into account,

then Experiment 3 can be said to replicate the pattern

of results in Experiment 2. In both cases, symmetry

detection is hindered if coarse-scaled symmetry is in-

tegrated with fine-scaled symmetry––even though, or
perhaps precisely because, the symmetry signals from

both areas are about equally strong. This is next dis-

cussed further.

7. General discussion

Mach (1886/1959) was probably the first to point out

that symmetry is better detectable than repetition. Since

then, many explanations of this phenomenon have been

proposed, but these explanations generally failed when

applied to other detectability phenomena concerning

perfect and perturbed regularities (for an overview, see
van der Helm & Leeuwenberg, 1996, 1999). The most

often proposed explanatory factor is proximity: In rep-

etition, the matching process has to bridge a fixed dis-

tance between corresponding points, whereas, in

symmetry, it can start with corresponding points near

the axis of symmetry. Proximity then is not so much

conceived as a Gestaltlike grouping principle, but rather

as an indication of the range (i.e., the so-called inte-
gration region) over which pattern elements may cause

neural interactions. In Marr�s (1982) terms, proximity

would thus be a factor at the implementational level. It

would, however, merely be a factor that (co)determines

the arena within which the detection process operates.

That is, it does not determine what happens within that

arena. Now, our experiments were meant to give further

understanding of what happens inside that arena.
The main result of Experiment 1 was that we found a

gradual increase of d 0 for repetition as the scale gets

coarser. We think that this can be attributed to the fact

that lower spatial frequencies are believed to be medi-

ated by fewer but larger receptive fields (cf. Palmer,

1999). That is, in our coarser-scaled repetitions, the

fewer but larger blobs are probably processed by way of

fewer but larger receptive fields. This suggests imple-
mentational compliance with the holographic models at

the computational and algorithmic levels, which both

predict a number effect in terms of blobs.

Although Experiment 1 did not yield clear-cut results

for symmetry, we think that symmetry does not exhibit a

number effect. That is, as van der Helm and Leeuwen-

berg (1999) argued, the symmetry of coarse blob shapes

can, logically, be assessed at a fine scale only. This

agrees with Dakin and Watt�s (1994) empirical finding

that symmetry detection matches the performance of a

fairly fine-scale filter. Hence, it seems that symmetry, in
agreement with the holographic approach, is processed

by way of a more or less constant number of receptive

fields, no matter the coarseness level.

Furthermore, a qualitative understanding of the re-

sults in Experiments 2 and 3 might start from the im-

plementational distinction between the magnocellular

and parvocellular pathways, as follows. In our symmetry

stimuli, the symmetry signal from the fine-scaled area
near the symmetry axis is probably fairly comparable in

strength to the symmetry signal from the coarse-scaled

blob areas (as follows from Tyler & Hardage�s, 1996,

finding mentioned earlier). Because these signals occur at

different, implementationally separated, spatial fre-

quency levels, these signals might well be difficult to in-

tegrate or might even engage in a sort of competition or

mutual inhibition (cf. Hughes, Nozawa, & Kitterle,
1996). That is, communication between two different

spatial frequency levels is probably much more difficult

than communication within one spatial frequency level. In

our repetition stimuli, such a competition or inhibition is

less likely to occur, because the repetition signal from the

coarse-scaled blob areas probably strongly dominates the

repetition signal from the fine-scaled surrounding areas.

The foregoing description sounds plausible but is also,
as said, qualitative. That is, competition, inhibition, and

difficult integration or communication, are terms that

describe process effects, rather than the process itself.

The holographic approach complements this qualitative

description with more specific details. As explicated

earlier, the holographic approach implies, computa-

tionally, a number effect in repetition but not in sym-

metry, which can be translated faithfully to the
algorithmic level, implying a linear process for repetition

but an exponential process for symmetry. As explicated

earlier as well, given the magno–parvo distinction this

holographic processing difference between repetition

and symmetry implies the same effects as implied by the

foregoing qualitative description. In other words, the

holographic approach complements the implementa-

tional magno–parvo distinction with algorithmic details
about the process itself––algorithmic details that, in

turn, were derived from computational considerations.

8. Summary and conclusion

In this paper, we reported on three experiments

in which we investigated differential effects of spatial
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scaling on symmetry and repetition perception. The

three experiments were triggered by the holographic

approach which predicts, among other things, that

repetition detection is affected by varying the number of

elements in a pattern, whereas symmetry detection is

not. The data of the first experiment showed that this is

indeed the case for black and white patch patterns in

which we increased patch size in the entire pattern,
yielding fewer but larger patches (or blobs). In the sec-

ond and the third experiment, we increased patch size in

small subpatterns only, yielding salient blob areas. In

these cases, the data confirmed a further prediction

by the holographic approach, i.e., the prediction that

salient subpatterns facilitate repetition detection but

hinder symmetry detection.

Both holographic predictions regarding differences
between symmetry and repetition were based on the

difference in holographic structure between repetition

and symmetry: Holographically, repetition gets a block

structure and symmetry a point structure. This struc-

tural difference is compatible with repetition detection

propagating linearly and symmetry detection propa-

gating exponentially. These structural and processing

differences explain not only the well-known pheno-
menon that symmetry is better detectable than repeti-

tion, but also the now found number effects and salience

effects. Regarding the now found salience effects, the

holographic explanation complements implementational

ideas about the processing of spatial frequencies.

In sum, the holographic approach provides a good

starting point for explaining the empirical results, in a

way that runs compatibly from the computational, via
the algorithmic, to the implementational level of de-

scription. That is, this article shows that more detailed

knowledge about the structures to be detected may lead

the way to more detailed knowledge about the detection

process itself.
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