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In the course of previous examinations, it has been suggested that minimally two lick pattern generators
have to take part in the formation of temporal patterns of homeostatic drinking. The drinking pattern
of five rats was investigated, subsequently analysed and compared to simulated data. As the interaction
of the two generators changes by the progress of satiation, the dynamics of drinking have to change
too. In this experiment we demonstrated this nonlinear dynamical change by the examination of
algorithmic complexity which reflects the nature of motivational changes and that the proportion of
the change of complexity is in harmony with our model of homeostatic drinking.
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1. Introduction

The rhythmical, stereotyped licking behavior of
mammals during drinking is analogous with the
stereotyped series of movements formed by certain
generators—Central Pattern Generators (CPG)—
which have been observed and described in invert-
ebrates. While the analysis and modelling of the CPG
in invertebrates has taken place in detail (Selverston,
1980; Beer & Chiel, 1995; Calabrese, 1995; Dean &
Cruse, 1995; Harris-Warrick et al., 1995; Hooper,
1995), we know very little about the nature of CPG
forming the licking and drinking behavior in
mammals, though some work has analysed the input
side of drinking CPG (DCPG) in detail. It has been
proved that licking is a pre-programmed ballistic
movement where the effect of the tactile stimulus will
appear late in the licking pattern (Mamedov & Bures,
1984). Not only tactile but gustatory stimuli also
influence the working of DCPG. Different concen-
trations of sugar solutions shape different drinking
patterns, changing the frequency and variance of the
intervals appearing in the drinking–licking records
(Davis & Smith, 1992).

Analysis of the temporal pattern of homeostatic
drinking behavior may reveal the nature of the
control exerted by the DCPG on the output pattern.
As drinking was organized into typical temporal
patterns—bouts—during most of the experiments, we
have already examined the intra-bout and inter-bout
intervals and measured changes of the bout lengths
along a satiation process (Karadi & Bende, 1995).
Three temporal measures during satiation showed
three different pictures, divergent from each other.
Therefore we assume that at least two generators
must be involved in the formation of a licking pattern.
The CPG network character in invertebrates and how
many generators contribute to the formation of the
behavior have been explored in much detail. Up to
now, only one research paper examined which part of
the brain is responsible for the drinking–licking
patterned behavior of rats: e.g. Wiesenfeld & Halpern
(1977) showed that during licking a slow wave
oscillation could be detected in the nucleus hypo-
glossus. The number of generators and functional
relations between them have not yet been verified. To
obtain more confirmation for the minimal two-
generator model, we examined the output side of
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DCPG. Previously (Karadi & Bende, 1995), we took
the temporal pattern of drinking apart and examined
various different lick patterns. Otherwise, the
patterned drinking can be treated as a complete series
of events and can be analysed as a dynamical
behavior of a system as a whole. This way, we can
examine what kind of dynamical changes happen to
the system through the restoration of homeostatic
deficit and we can conclude how many generators,
and in what proportion of them, do take place in the
formation of these dynamics, because other statistical
analyses of drinking patterns (distribution test of
inter-lick intervals, log-survival analysis) are unable
to confirm well the number of generators in the
record. The customary time series methods used for
dynamical systems analysis (Lyapunov exponentials,
correlation dimension calculation) are difficult to use
for some biological phenomena due to the few
numbers of recordable data, so we applied algorith-
mic complexity examination which is used for the
dynamical analysis of smaller data pools.

2. Subjects and Data Acquisition

The experimental subjects were adult Wistar rats
from both sexes (N=5), weights 300–350 g). The
animals were housed individually in their home cages
under 12-hr light/dark cycles, where they could eat
and drink ad lib standard rat food and tap water
except on test days. Before testing, a 24-hr
water deprivation was introduced, and the drinking
tests were running for 3 days in 1-hr daily sessions.
During the experimental sessions Ss. could drink tap
water ad lib from a spout. We moved the animals
from their home cages and put them into the test
cages, where they drank water from the spout. Across
a drinking recess, we measured the time between
tongue-movements (inter-lick intervals) with photo-
cell lickometer. Photocell signals were fed into a
computer and recorded by software developed by
ourselves. Data consisted of durations of licks,
inter-lick intervals and of lick frequencies. The total
recording period was divided into six 10-min
timebins, to record and to analyse subsets (trend) of
data.

The mean amount of consumed water during
experimental sessions (Fig. 2) showed a typical
satiation curve, in as much as rats consumed nearly
50% of the total 1-hr intake within the first 10-min
period, and the trend became asymptotic as satiation
progressed. During the analysis, derived data records,
e.g. lick-bouts and else, were worked out, however,
the complexity measures, applied below, used only
inter-lick interval lengths for computation. Analysis

F. 1. Distribution of the averaged inter-licks intervals of five
rats during a 1-hr session (intervals longer than 240 ms omitted due
to their few numbers).

of differences of bouts themselves, etc. were not
analysed here.

3. Complexity and its Measures

Time series formed by biological systems as a
consequence of the changes of the inner environment,
often show a wild scale of dynamical behavior.
Dynamics may change between chaotic, irregular,
highly complex and the regular and less complex
behaviors. Lyapunov exponentials characterize time
series mainly qualitatively (express the presence of
chaos in it), while the correlation dimension describes
the system quantitively (measures its complexity;
Wolf et al., 1985; Kaplan et al., 1991). The chaos
theory gives two methods of examination for the
characterization of a dynamical system. The disad-
vantage of these methods is the great number of data
points for reliable calculation (their demand for
acurate calculation is 10 000 points), so these methods
cannot be used for the dynamical changes shown in
the biological system during the formation of
satiation during drinking, as we can get only
maximally 4000 data points from an animal during a
1-hr testing. That is why we chose the less
data-demanding algorithmic complexity examination
for the analysis of the temporal pattern of drinking
behavior. Before we detail the examination, we have
to define the meaning of complexity. In terms of chaos
theory, the complexity of a dynamical system is equal
to its dimension. Dimension is the number of those
dynamical variables that take part in the formation of
the given signal. The dimension of a regular periodical
signal is 1, while the level of a random sequence may
be practically infinite. Another definition of complex-
ity, similar to this one, is used for measuring
algorithmic complexity. According to Chaitin (1975),
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the complexity of a signal is equal to the minimal
length of algorhythm with which we can generate the
given symbol sequence. Papentin (1980) modified this
definition: complexity of a sequence is equal to the
length of the minimal algorhythm with which we can
describe a sequence. Hinegardner & Engelberg (1983)
simplified further: ‘‘. . . complexity to be the size of
the minimum description of an object’’. To our view,
definition of complexity means the minimal algorith-
mic length that is equal to the number of those
dynamical variables that characterize the given
system. According to Rapp’s algorithmic method
(1994), a given complexity measure gives a reliable
value if we look at the median of the original time
series and we encode the given biosignal to binary
series according to this. In the case of drinking
behavior the median of the inter-lick intervals (ILI)
was calculated. We assigned the 1-hr drinking time
into six 10-min bins and thus we got six pieces of the
record. In these pieces (timebins), the intervals longer
than the median got a value of 1, those less than or
equal to it got 0. We measured the complexity of the
binary sequence by the method detailed below. As
follows, by Rapp (1994) and his colleagues’
instruction for measuring of complexity, the pro-
cedure is best described by considering an arteficial
example. There is a given binary sequence:

S1 =0 1 1 0 1 0 0 1 1 0 1 0 0 1 0 0

First we look for repeated pairs of symbols and we
sign them with different symbols.

a=0 1

The pair 01 is repeated five times and we substitute
this pair with a new symbol ‘‘a’’. The sequence then
reduces to

S2 = a 1 a 0 a 1 a 0 a 0 0

The searching of repeated pairs is continued. The pair
a0 is repeated three times. The symbol ‘‘b’’ signs this
pair.

b= a0

S3 = a 1 b a 1 b b 0

According to Rapp, the compression of a given
sequence can occur only if a pair is repeated at least
three times. In S3 we cannot find symbol pairs which
are repeated more than twice. Therefore we begin the
search for repeated triplets. Now, triplets disappear
too.

c= a 1 b

The a 1 b triplets are compressed in ‘‘c’’ symbol,

S4 = c c b 0

S5 = c2 b 0

In S4 the repeated symbol (cc) is expressed as
exponential (c2) in S5.

Further we cannot find repeated sequences. So we
encoded the original signal to a minimal sequence,
and arrived at a quantitative definition of complexity.

‘‘The grammar complexity of the original message
is defined to be the sum of the complexities of each
component in the compressed message (Rapp, 1993).’’
In S5 we can find three symbols (c b 0), coding the
binary sequence, and these symbols contribute 1 to
the sum: ‘‘a’’ and ‘‘b’’ symbol take a part with 2
because they contain two symbols (repeated pairs):
‘‘c’’ with 3 because it contains three symbols and ‘‘c2’’
takes one occurence of exponents 2 and it contributes
log22 part to the sum:

Complexity= [3+2+2+3+ log22]=11

The square brackets indicate that the integer part is
to be taken.

Since the lengths of sequences were not equal in the
six 10-min bins, we calculated relative complexity:

Relative Complexity

=Complexity/Length of Sequence

So the complexity values in each bin become
comparable and we can follow how the dynamics of
drinking change within the 1-hr drinking session.

4. Results

Before the presentation of complexity scores we
demonstrate the averaged cumulative intake curve as
percents of the total intake (Fig. 2), as well as the
distribution of inter-lick intervals during the 1-hr
drinking sessions (Fig. 1). The intake curve shows the
pure satiation effect of the water drinking.

In the case of all rats the 3-day, 1-hr drinking
sessions were processed in 10-min decompositions
and thus we got six complexity values for 1 day. In
the first step we averaged the 3-days’ values of each
rat. One-way ANOVA analysis was used to check
that none of the daily complexity values differed
significantly from the others in the case of each
animals. The ANOVA results in the case of each
animal: 1st rat (n=18; df: 2,15; F=0.008; p=0.99;
n.s.); 2nd rat (n=18; df: 2,15; F=0.189; p=0.82;
n.s.); 3rd rat (n=18; df: 2,15; F=0.866; p=0.44;
n.s.); 4th rat (n=18; df: 2,15; F=1.55; p=0.25;
n.s.); 5th rat (n=18); df: 2,15; F=1.3838; p=0.19;
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F. 2. Averaged cumulative intake curve of five rats during a
1-hr drinking sessions.

F. 3. Change of the relative mean complexity (2SEM) scores
during real drinking. x-axis represents the 10-min bins of 1-hr
sessions and y-axis depicts the complexity scores.n.s.). There were no significant differences between

the 3-day complexity values in the case of each rat.
We also used one-way ANOVA checking that there
were no significant differences between the rats’ values
(n=30; df: 4,25; F=1.851; p=0.15; n.s.). The
animals’ complexity values therefore could be
considered as homogenous. After that we also
averaged the complexity values of five rats, yielding
five-rat averaged relative complexity values in 10-min
decompositions (timebins) (Table 1).

Figure 3 shows the averaged relative complexity
changes in the 1-hr session. We see that the
complexity rises continually until the fifth 10-min bin,
then in the 6th 10-min it falls to the value measured
in the 3rd interval.

5. Discussion

Up to now, none of the earlier studies addressed
directly the dynamics of drinking behavior by the
method of complexity analysis.

According to our viewpoint, complexity analysis
presents new information about this behavior. The

usage of this analysis demonstrated that we can reveal
the pure nonlinear dynamics of this behavioral
(drinking) system. Standard methods (Lyapunov,
correlation dimension) cannot explore fine dynamical
changes in small data sets through the great error
level of the measure in such cases. It has not been
decided whether two or three generators take place in
formation of behavior of time series, based on
consummatory behavioral models (Sibly et al., 1990;
Berdoy, 1993). We have found, that in the shaping of
drinking pattern, two generators, one Bout and
another Non-Bout generator take place (results:
Karadi & Bende, 1995). Our complexity examination
supports the validity of this minimal two-generator
model. The animals were made thirsty for 24-hr,
consequently they were drinking without long breaks
in the first 10 min of the session: they produced long
bouts with little stops for inter-bout intervals. The
variability of intra-bout intervals is very little, as our
earlier research showed. As the intra-bout intervals
dominate in the first time series in the first bin, their
complexity is small. From the beginning of the 2nd
10-min, we see the teamwork of the Bout and
Non-Bout generators. As the variability of the
inter-bout intervals proved significant and number
and lengths of intervals increase in the drinking
pattern as satiation proceeds, that is why the
complexity of the pattern increases continually. This
can be seen until the fifth 10-min bin and in the 5th
bin the value of complexity is the greatest. It is
interesting that complexity does not grow further, but
in the last 10-min it falls back to a medium level. This
can be explained best by the fact that animals often

T 1
Averaged relative complexity scores of
the five rats in the six 10-min bins of the

1-hr drinking session
Bins Means2 SE

1 0.2782 0.035
2 0.362 0.027
3 0.4042 0.020
4 0.4642 0.025
5 0.4962 0.038
6 0.4142 0.026
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F. 4. Histogram showing the frequency distribution of
inter-lick intervals in six different timebins during 1-hr simulated
drinking sessions. Total number of intervals per bin is decreasing
continuously from 1st to 6th. The proportion of the number of the
‘‘bout-’’ (short) and of ‘‘non-bout’’ (longer) intervals are decreasing
regularly so that the decreasing number of ‘‘intra-bout’’ intervals
has been progressively divided by the increasing number of
‘‘non-bout’’ intervals. The lengths of ‘‘intra-bout’’ intervals were
set uniformly to 0.020 s in all bins, while those of ‘‘non-bouts’’ were
chosen randomly from progressively longer time intervals (from
0.02 to 1 s in the first two bins, and then from intervals ranging
from 1 to 2, from 2 to 3, from 3 to 4, then from 4 to 5 s
consecutively in the further bins, see Table 2.) Values of each
inter-lick lengths were chosen randomly from a uniform random
number distribution of the above ranges. Satiation by the data
increases continually during the simulated session, and the number
of licks gradually reaches zero. y-axis assigns the bins and x-axis
represents the number of intervals. q 0–2, q...... 2–100, ;< 100–200,
q=== 200–300, Q 300–400, q000 400–500.

T 2
Numbers of the simulated inter-lick intervals, repre-
senting a regular slowing rate of homeostatic drinking

of an ‘‘ideal rat’’
Interval
range
(ms) Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6

Q=20 950 720 457 201 49 17
20–1000 50 180 173 94 40 16

1000–2000 0 0 70 52 15 13
2000–3000 0 0 0 53 20 12
3000–4000 0 0 0 0 26 18
4000–5000 0 0 0 0 0 24
N: 1000 900 700 400 150 100

As it is shown, the first two timebins contain only intervals shorter
than 1 s. Explanation on Fig. 4

time series, the less variable intra-bout intervals take
part with more impact, so the complexity of drinking
decreases in the 6th 10-min period. Explanation with
one simple frequency generator could hardly lead to
the demonstrated results.

Figures 4 and 5 and Table 2 show interval
frequency histogram and complexity values of an
ideal, simulated rat drinking.

Simulated data were generated so that the satiation
would increase continually (as is expected) and the
proportion of longer inter-lick intervals, presumably,
increase progressively. So by the increase of satiation
the animal produces less and less bouts and has more,
and longer, breaks between them. The complexity
examination of this model shows that the complexity
is increasing continuously, it is the greatest in the 6th
10-min and it does not fall back to a medium value.
In the case of the real animal, the drop in the 6th
10-min may seem to be strange as the general opinion
is that the 1-hr drinking completely restores the water
deficit. The animal should not produce a thirsty
drinking pattern formed on a medium satiation level
in the last part. According to us the drinking in the
last minutes is not necessarily homeostatic, rather
perhaps it is similar to some adjunctive behaviors, like
vacuum activity (Falk, 1977; Roper, 1983). To argue
for or against this needs further research and data.
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